
lable at ScienceDirect

International Journal of Thermal Sciences 49 (2010) 319–332
Contents lists avai
International Journal of Thermal Sciences

journal homepage: www.elsevier .com/locate / i j ts
Forced convection in thermally developing region of a channel partially filled
with a porous material and optimal porous fraction

V.V. Satyamurty a,*, D. Bhargavi b,1

a Dept. of Mech. Engg., Indian Institute of Technology, Kharagpur, West Bengal 721302, India
b Dept. of Mathematics, Indian Institute of Technology, Kharagpur 721302, India
a r t i c l e i n f o

Article history:
Received 8 May 2009
Received in revised form
6 July 2009
Accepted 28 July 2009
Available online 21 August 2009

Keywords:
Channels partially filled with porous
material
Optimal porous insert
Heat transfer enhancement
* Corresponding author. Tel.: þ91 3222 282974; fax
E-mail addresses: vvsmurty@mech.iitkgp.ernet.in

math@gmail.com (D. Bhargavi).
1 Tel: þ91 3222 282974; fax: þ91 3222 255303.

1290-0729/$ – see front matter � 2009 Elsevier Mas
doi:10.1016/j.ijthermalsci.2009.07.023
a b s t r a c t

Local Nusselt numbers have been obtained on the porous side and the fluid side of the parallel plate
channel. Plots to obtain wall heat transfer directly have been presented. Change in wall heat transfer has
been examined to establish that the maximum enhancement in heat transfer occurs at a porous fraction
of 0.8 at a Darcy number of 0.001. Correspondingly, the maximum enhancement per unit pressure drop
occurs at a porous fraction of 0.7. As Darcy number increases, the porous fraction at which the maximum
enhancement in heat transfer occurs decreases.
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1. Introduction

Forced convective Nusselt number is higher when ducts in
general have been filled with porous material. For example, the
fully developed Nusselt number for flow between parallel plates
subjected to constant, equal temperatures is 7.53, see, p. 155, Shah
and London [1], while the corresponding value when the channel is
filled with a porous material is 9.27 (Kaviany [2], Poulikakos and
Kazmierczak [3], Satyamurty and Marpu [4]) when the Darcy
number, Da ¼ 0.001. However, the increase in heat transfer is fol-
lowed by increased pressure drop. In view of this and also because
of present day applications, considerable attention is paid to study
heat transfer in channels partially filled with porous materials.
Recent applications, where studies on partially filled porous
channels can be gainfully employed, include solar absorbers, cata-
lytic and inert packed bed reactors, fuel cells, and in general
compact heat exchangers. A typical proton exchange membrane
(PEM) fuel cell consists of a gas channel, porous media gas diffuser,
porous catalyst layer and a membrane. The internal flow configu-
rations that are commonly studied are, the parallel plate channels
: þ91 3222 282278
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or annuli or pipes with a central porous core or annular insert.
However, from practical considerations, attaching the porous insert
to one wall, may be the requirement of the device or may be of
manufacturing of convenience.

Several studies examined the boundary conditions at the
porous–fluid interface. Beavers and Joseph [5] first proposed the
boundary conditions at the porous–fluid interface based on
experimental investigation. Comprehensive literature survey on
this subject is given in the monograph by Nield and Bejan [6].
Poulikakos and Kazmierczak [3] presented an exact solution of the
forced convection in a channel, subjected to uniform heat flux and
constant temperature at the walls, partly (symmetric) filled with
a porous medium adjacent to both the walls using the non-Darcy–
Brinkman model. Vafai and Kim [7] employed continuity of velocity
and velocity gradients at the interface in obtaining an exact solu-
tion for fully developed flow, between a plate and an unbounded
porous medium. Jang and Chen [8] have presented a numerical
study of fully developed forced convection for the same configu-
ration employing Darcy–Brinkman–Forchheimer model and
included thermal dispersion effects in the porous matrix. Ochoa-
Tapia and Whitaker [9,10] developed a boundary condition that
accommodates a jump in the velocity gradients at the interface by
applying volume-averaging technique. Subsequently this boundary
condition commonly got referred to as stress jump boundary
condition. Kuznetsov [11–14] extensively used the stress jump
boundary condition and obtained analytical solutions for fluid flow
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Nomenclature

Cp specific heat, J/(kg K)
Da Darcy number, (¼K/H2)
H spacing between the two plates, m
K permeability of the medium, m2

keff effective thermal conductivity in the porous region,
W/(m K)

kf thermal conductivity of the fluid, W/(m K)
lp thickness of the porous layer, m
MD number of grids along the axial direction in the

numerical scheme
_m mass flow rate, kg/s

ND number of grids in the normal (Y) direction
Nu1x local Nusselt number at wall 1 at Y ¼ �1/2 for 0 < gp

< 1.0
Nu2x local Nusselt number at wall 2 at Y ¼ 1/2 for 0 < gp

< 1.0
Nugp¼0 local Nusselt number for the clear fluid i.e., gp ¼ 0
Nugp¼0 local Nusselt number for the channel fully filled with

the porous material, i.e., gp ¼ 1
p pressure, N/m2

Pgr non-dimensional pressure gradient, dP/dX
Pe Peclet number, (urefH)/af

Qxf energy gained by the fluid, defined by Eq. (34), J/(m s)
Qxf non-dimensional energy gain by the fluid, defined by

Eq. (35)
Qxw non-dimensional total heat transfer from both the

walls up to X* for the channel partially filled with the
porous material

Q
gp¼0
xw non-dimensional total heat transfer from one wall up

to X* in the clear fluid channel i.e., when there is no
porous insert, gp ¼ 0

Q
gp¼1:0
xw non-dimensional wall heat transfer from one wall up

to X* in the channel fully filled with the porous
material i.e., gp ¼ 1.0

Qxw1 non-dimensional wall heat transfer from wall 1 at Y ¼
�1/2 up to X* for the channel partially filled with the
porous material

Qxw2 non-dimensional wall heat transfer from wall 2 at Y ¼
�1/2 up to X* for the channel partially filled with the
porous material

Tb bulk mean temperature, K
Tbx suffix x is included to emphasize that Tb is at an axial

distance of x in Eq. (34)
Te fluid inlet temperature at entry to the channel, K

Tf temperature in the fluid region, K
Tp temperature in the porous region, K
Tw wall temperature, K
Uf non-dimensional velocity in X direction in the fluid

region (¼ uf/uref)
Ui non-dimensional interfacial velocity
Up non-dimensional velocity in X direction in the porous

region (¼ up/uref)
u velocity in x direction, m/s
uf velocity in the fluid region, m/s
up velocity in the porous region, m/s
uref reference velocity, m/s
X non-dimensional axial coordinate
X* X/Pe
X*

fd value of X* for the thermal field to be fully developed
x dimensional coordinate in the flow direction
Y non-dimensional coordinate in the normal direction to

the flow
y dimensional coordinate in the normal direction to the

flow

Greek Symbols
af thermal diffusivity of the fluid, m2/s
aeff effective thermal diffusivity of the porous region, m2/s
b stress jump coefficient
gp porous fraction, i.e., non-dimensional thickness of the

porous layer, lp/H
DNu net change in Nusselt number defined by Eq. (41)
DQxw net change in wall heat transfer defined by Eq. (39)
DQxw�PD net change in wall heat transfer per unit pressure drop

defined by Eq. (40)
DX* grid size in the axial direction ¼ X*

fd=MD
DY grid size in the normal direction ¼ 1/ND
3 mf/meff

h kf/keff

qb non-dimensional temperature based on bulk mean
temperature

qf non-dimensional temperature in the fluid region,
(Tf � Tw)/(Te � Tw)

qp non-dimensional temperature in the porous region,
(Tp � Tw)/(Te � Tw)

q* non-dimensional bulk mean temperature, (Tb � Tw)/
(Te � Tw)

mf fluid dynamic viscosity, kg/(m s)
meff effective viscosity in the porous region, kg/(m s)
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in channels partially filled with a porous medium. These investi-
gations by Kuznetsov differ in the flow model employed to describe
the porous region. Alazmi and Vafai [15] examined in detail the
influence of different conditions at porous–fluid interface. Studies
by Al-Nimr and Alkam [16], Chikh et al. [17] deal with heat transfer
in annular ducts. Alkam and Al-Nimr [18,19], have employed porous
substrates in solar collectors to improve the thermal performance.

Alkam et al. [20] examined the efficacy of depositing a given
amount of porous material on one wall compared to distributing on
both the walls of the channel on enhancement of heat transfer. The
channel walls were subjected to constant temperature. Alkam et al.
concluded that the enhancement in heat transfer is higher when
the porous material is distributed equally on the two walls when
the porous fraction is low, while depositing on one wall is advan-
tageous for high porous fractions. Further, the pressure gradient has
been found to be higher when the porous material is deposited on
one wall only for all porous fractions. Hamdan et al. [21] stated that
the maximum Nusselt number is achieved when the porous insert
of certain thickness is placed at the middle of the channel. However,
explicit evaluation of the optimum thickness or dependence of
enhancement in Nusselt number on the porous insert thickness has
not been brought out. Bhargavi et al. [22] very recently studied the
effect of porous fraction and interfacial stress jump on fully
developed skin friction and heat transfer in flow through a channel
partially filled with porous material. The channel walls are sub-
jected to uniform heat flux. Bhargavi et al. showed that the net
change in the Nusselt numbers at the two walls though, is negative
for small porous fractions, becomes positive and for some porous
fraction (<1), even exceeds the change that follows when the
channel is fully filled with porous material. Further, Bhargavi et al.
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Fig. 1. Physical model and the coordinate system.
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noted that the contribution from the fluid side to the change in the
Nusselt number is more significant. Thus the trends, reported in
Bhargavi et al. support the conclusion of Hamdan et al. since the
channel with a porous core has two fluid filled regions. It is noted
that the thermal boundary conditions employed in Bhargavi et al.
and in Alkam et al. and Hamdan et al. are different. Also, the
conclusion of Alkam et al. [20] is based on the ratio of accumulated
heat transferred in the two arrangements considered, whereas the
pressure drop is a point function. Even though Alkam et al.’s
investigation determines the better of the two arrangements of the
porous insert vis-à-vis the porous layer thickness, does not address
the basic issue, whether the porous insert enhances the heat
transfer at all compared to heat transfer in a clear channel.

The present investigation is taken up to establish the condition
for heat transferred in the porous insert added channel is higher
than that compared to the clear channel and determine the
optimum thickness of the porous material when attached to one
wall only. The channel walls are subjected to equal, constant
temperature. The flow in both the regions is assumed to be fully
developed and the thermal field is developing. The study estab-
lishes the optimum thickness based for the maximum enhance-
ment in the cumulative heat transfer as well as cumulative heat
transfer per unit pressure drop.
2. Mathematical formulation

The physical model and the coordinate system, that of a channel
formed by parallel plates, H distance apart, partially filled with
a porous insert attached to one wall is shown in Fig. 1. x is the axial
distance and y is normal to the flow direction measured from the
center line of the channel. As per the coordinate system, the plates
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Fig. 2. Variation of (a) Non-dimensional temperature, q and (b) Non-dimensional temperat
are at y ¼ �H/2. The plate at y ¼ �H/2 shall be referred to as wall 1
and the plate at y ¼ H/2 as wall 2.

The thickness of the porous material is lp. The porous material of
thickness lp is adjacent to the wall 1 as shown in Fig. 1. The fluid
enters at a temperature of Te. Both the walls are subjected to
uniform temperature of Tw. The problem has been studied under
the assumptions, that the flow is steady, incompressible and fully
developed. The fluid and the porous matrix are in local thermal
equilibrium. The porous medium is homogeneous and isotropic.
Pressure work is neglected and the fluid properties are assumed to
be constant. The flow in both the porous and clear fluid regions is
assumed to be fully developed, as obtained from Brinkman
extended non-Darcy model and Hagen–Poiseuille flow with rele-
vant boundary conditions at the walls and at fluid–porous interface.
The following non-dimensional variables have been introduced.

X ¼ x
H
; Y ¼ y

H
; Uf ;p ¼

uf ;p

uref
; P ¼ p

mf Huref=K
;

qf ;p ¼
Tf ;p � Tw

Te � Tw
(1)

In Eq. (1), X, Y are the non-dimensional axial and normal coor-
dinates. U and P are the non-dimensional velocity, and pressure.
The corresponding dimensional velocity and pressure are u and p.
uref used to non-dimensionalize velocity, is the average velocity
through the channel which can be obtained from the volumetric
flow rate per unit width of the channel or by averaging the veloc-
ities in the fluid and porous regions. q is the non-dimensional
temperature. The subscripts f and p refer to the fluid and porous
regions. mf is the viscosity of the fluid, K is the permeability of the
porous medium and kf is the thermal conductivity of the fluid. In
addition, the non-dimensional porous layer thickness gp, referred
to as porous fraction, is defined by,

gp ¼ lp=H (2)

The governing equations for conservation of momentum and
energy applicable in the fluid and porous region in non-dimen-
sional form are as following.

Fluid Region:

0 ¼ �dP
dX
þ Da

d2Uf

dY2 (3)

Uf
vqf

vX*
¼ v2qf

vY2 (4)
b
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X*, the normalized X, that rendered Eq. (4) independent of the
Peclet number, Pe. X* is defined by,

X* ¼ X=Pe (5)

where

Pe ¼ uref H=af (6)

In Eq. (3), Da, the Darcy number is defined by,

Da ¼ K=H2 (7)

Porous Region:

Up ¼ �
dP
dX
þ Da

3

d2Up

dY2 (8)

Up
vqp

vX*
¼ 1

h

v2qp

vY2 (9)

In Eqs. (8) and (9), 3 and h are defined by,

3 ¼ mf=meff and h ¼ af=aeff ¼ kf=keff (10)
-0.4

-0.2

0.0

0.2

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4
0.2
0.1
0.02
0.00X* =

Non-dimensional temperature, 
a

θ

Y

Fig. 4. Variation of (a) Non-dimensional temperature, q and (b) Non-dimensional te
and Da ¼ 0.001.
1.6

5
5

mperat
Boundary conditions:

qf ;pð0; YÞ ¼ 1 at X* ¼ 0 for � 1=2 � Y � 1=2 (11)

Up ¼ 0; qp ¼ 0 at Y ¼ �1=2 for X* > 0 (12)

Uf ¼ 0; qf ¼ 0 at Y ¼ 1=2 for X* > 0 (13)

Up ¼ Uf ¼ Ui;
1
3

dUp

dY
� dUf

dY
¼ bffiffiffiffiffiffi

Da
p Ui at the interface;

Y ¼ gp � 1=2 (14)

qp ¼ qf ;
vqp

vY
¼ h

vqf

vY
at the interface; Y ¼ gp � 1=2 for

X* > 0 (15)

The conditions given in Eq. (14) ensure the continuity of the
velocity and account for jump in the shear stress as given by Ochoa-
Tapia and Whitaker [9] and [10] at the interface. In Eq. (14), b is the
stress jump coefficient, which permits the necessary flexibility in
the conditions to suit, say, experimental data.
b
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3. Expressions for velocity

3.1. Velocity profiles

On solving Eq. (3) along with the boundary conditions given by
Eqs. (13) and (14), velocity in the fluid region is obtained as,
Ui ¼
6ðA1�1Þ

ffiffiffiffiffiffiffiffi
Da3
p �

gp�1
�h

2ðA1�1Þ
ffiffiffiffiffiffi
Da
p

�ðA1þ1Þ
�

gp�1
� ffiffi

3
p i

(
12ðA1�1ÞDa3=2

n
2ðA1�1Þ

ffiffiffiffiffiffiffiffi
Da3
p

�
h
ðA1þ1Þ

�
gp�1

�
þ2ð1�A1Þb

�
gp�1

� ffiffi
3
p
þðA1þ1Þgp3

io
þ
�

gp�1
�3 ffiffi

3
p h

4ðA2�1Þ
ffiffiffiffiffiffiffiffi
Da3
p

þ
�
A2
�
b
ffiffi
3
p
�1
�
�
�
1þb

ffiffi
3
p ��i

þ12Da
�

gp�1
� ffiffi

3
p h

A2
�
b
ffiffi
3
p
�1
�
�
�
1þb

ffiffi
3
p �
�2A1

�
gp�1

�i
) (22)
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Fig. 6. Variation of vqb/vX* with X* for gp ¼ 0 and gp ¼ 1.0.
Uf ðYÞ ¼
ð2Y � 1Þ

h
Pgr

�
1þ 2

�
Y � gp

���
gp � 1

�
þ 4DaUi

i
8Da

�
gp � 1

�
(16)

where Pgr ¼ dP/dX, is the pressure gradient.
Similarly, on solving Eq. (8), along with the boundary conditions

given by Eqs. (12) and (14), velocity in the porous region is given by,

UpðYÞ ¼
1
2

�
� 1þ u2

u1

��
� 1þ e

ð1þ2YÞ
ffi
3
p

2
ffiffiffi
Da
p

�
e�Y

ffiffiffi
3

Da

p h
A1
�
Pgr þ Ui

�
�
�

e�
1
2

ffiffiffi
3

Da

p
� eY

ffiffiffi
3

Da

p �
� pgr

�
eY

ffiffiffi
3

Da

p
þ A2e�

1
2

ffiffiffi
3

Da

p �i
(17)

where

u1 ¼ sinh
h
gp

ffiffiffiffiffiffiffiffiffiffiffi
3=Da

p i
(18)

u2 ¼ cosh
h
gp

ffiffiffiffiffiffiffiffiffiffiffi
3=Da

p i
(19)

A1 ¼ u1 þ u2 (20)
A2 ¼ 1þ 2u1A1 (21)

Ui, the interfacial velocity in Eqs. (16) and (17) is determined
from the stress jump condition in Eq. (14) as,
Pgr, the non-dimensional pressure gradient is determined from,

Zgp�1=2

�1=2

UpdY þ
Z1=2

gp�1=2

Uf dY ¼ 1 (23)
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Pgr is given by,
Pgr ¼
dP
dX
¼

12
h�

1�gp

�
ð1þA2Þþ

h ffiffiffiffiffiffi
Da
p

þb
�

gp�1
�i ffiffi

3
p
ðA2�1Þ

i
(

12ðA1�1ÞDa3=2
n

2ðA1�1Þ
ffiffiffiffiffiffiffiffi
Da3
p

�
h
ðA1þ1Þ

�
gp�1

�
þ2ð1�A1Þb

�
gp�1

� ffiffi
3
p
þðA1þ1Þgp3

io
þ
�

gp�1
�3 ffiffi

3
p h

4ðA2�1Þ
ffiffiffiffiffiffiffiffi
Da3
p

þ
�
A2
�
b
ffiffi
3
p
�1
�
�
�
1þb

ffiffi
3
p ��i

þ12Da
�

gp�1
� ffiffi

3
p h

A2
�
b
ffiffi
3
p
�1
�
�
�
1þb

ffiffi
3
p �
�2A1

�
gp�1

�i
)

(24)
The details of the procedure and the expressions for Uf, Up and
Pgr given by Eqs. (16), (17) and (24) are available in Bhargavi et al.
[22].
4. Numerical scheme: SAR

Numerical solutions to Eqs. (4) and (9) along with the boundary
conditions on q given in Eqs. (11–15) have been obtained employing
the Successive Accelerated Replacement (SAR) scheme as described
in Satyamurty [23] and used extensively in [24–30]. The basic
philosophy of the SAR scheme is to guess a profile for each variable
that satisfies the boundary conditions. Let the partial differential
equation governing a variable, f(x,y), expressed in finite difference
form be given by fM;N ¼ 0 where (M, N) represent the nodal point,
when the non-dimensional height and length of the channel are
divided into a finite number of intervals MD, ND respectively. The
guessed profile for the variable f at any mesh point, in general, will
not satisfy the equation. Let the error in the equation at (M, N) and
kth iteration be fk

M;N . The (k þ 1)th approximation to the variable f

is obtained from,

fkþ1
M;N ¼ fk

M;N � u
n

fk
M;N=

�
vfk

M;N=vfM;N

�o
(25)

In Eq. (25), u is an acceleration factor which varies between 0 <
u < 2. u < 1 represents under relaxation and u > 1 represents over
relaxation. The procedure of correcting the variable f at each mesh
point in the entire region of interest is repeated until a convergence
criterion is satisfied. The criterion is that, the normalized change in
the variable at any mesh point between kth and (k þ 1)th
approximation satisfies,
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			1� �fk
M;N=fkþ1

M;N

�			 < 3 (26)

where 3, the error tolerance limit is a prescribed small positive
number.

To correct the guessed profiles, each dependent variable has to
be associated with one equation. It is natural to associate the
equation for a variable that contains the highest order derivative of
that variable. Non-dimensional temperatures qp and qf are cor-
rected employing Eqs. (4) and (9).

4.1. Nusselt number

If h1x and h2x are the local heat transfer coefficients at the porous
side wall (Wall 1) and fluid side wall (Wall 2), for a porous fraction
of gp, the corresponding Nusselt numbers based on the hydraulic
diameter are given by,

Nu1x ¼
h1xð2HÞ

kf
¼ 2

hq*

vq

vY

					
Y¼�1=2

(27)

Nu2x ¼
h2xð2HÞ

kf
¼ �2

q*

vq

vY

					
Y¼1=2

(28)

q* in Eqs. (27) and (28) is the non-dimensional bulk mean
temperature defined as,

q* ¼ Tb � Tw

Te � Tw
(29)

In Eq. (29), Tb, the bulk mean temperature is defined by,
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Tb ¼

Zlp�H=2

�H=2

upTpdyþ
ZH=2

lp�H=2

uf Tf dy

Zlp�H=2

�H=2

updyþ
ZH=2

lp�H=2

uf dy

(30)

Using Eq. (30) in Eq. (29), the non-dimensional bulk mean
temperature, q* can be expressed as,
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q* ¼

Zgp�1=2

�1=2

UpqpdY þ
Z1=2

gp�1=2

Uf qf dY

Zgp�1=2

�1=2

UpdY þ
Z1=2

gp�1=2

Uf dY

(31)

It is also common to describe non-dimensional temperature
based on bulk mean temperature defined by,
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qb ¼
T � Tw

Tb � Tw
(32)

The familiar condition for the fully developed thermal field is
expressed as,
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vqb

vX*
¼ 0 for X* > X*

fd (33)

where X*
fd is the axial normalized (with Peclet number) non-

dimensional distance for the thermal filed to be fully developed. Eq.
(33) need not be applied to Eqs. (4) and (9). Eq. (33), the standard
condition for fully developed thermal field is given, to later on
examine the validity when the channel is partially filled with the
porous material as the geometric asymmetry lead to flow
asymmetry.

5. Results and discussion

To implement the SAR scheme [23–30], X*
fd has been chosen as

0.8. After numerical trials DX* ¼ 0.0001 (corresponds to MD ¼
4000) and DY¼ 0.025 (corresponds to ND¼ 40) have been found to
be satisfactory. The parabolic equations {Eqs. (4) and (9)} do not
require imposition of downstream boundary condition, choice of
DX* alone is sufficient; however assigning X*

fd ¼ 0:8 is notional and
sufficiently larger than the commonly reported values for clear fluid
or fully filled with porous material channels. Non-dimensional
temperature q is corrected until the convergence criterion of 3 ¼
10�6 is satisfied between two successive iterations at all mesh
points according to Eq. (26). Further, satisfactory convergence is
obtained with u < 1.0, under relaxation. Under relaxation has
become necessary owing to steep gradients in the velocity in the
porous region, particularly for low Darcy number values.

Numerical solutions to Eqs. (4) and (9) have been obtained for
Da ¼ 0.001, 0.005, 0.01 and 0.1 for gp ¼ 0, 0.2, 0.4, 0.6, 0.8 and 1.0
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and assuming the stress jump coefficient b ¼ 0. However, influence
of the stress jump coefficient on Nusselt number has been exam-
ined for a selected value of, Da ¼ 0.001, for gp ¼ 0.8, where
maximum changes in Nusselt number have been observed. Further,
it has been assumed that 3 ¼ mf/meff ¼ 1 and h ¼ kf/keff ¼ 1
throughout the computations. h ¼ kf/keff ¼ 1 ensures that the
expected enhancement in heat transfer is the least. h < 1 which is
desirable for heat transfer enhancement leads to even higher
enhancement in heat transfer.
5.1. Hydrodynamics

Hydrodynamics (velocity profiles, skin friction coefficient) and
the influence of the stress jump coefficient are independent of the
thermal field. Hydrodynamics, thus, remains the same as described
in Bhargavi et al. [22].
5.2. Temperature profiles

Profiles of the non-dimensional temperature q, and the non-
dimensional temperature based on bulk mean temperature, qb,
profiles are shown in Fig. 2(a) and (b) for gp ¼ 0.

q and qb profiles shown in Fig. 2(a) and (b) are the standard
profiles for laminar forced convection through a parallel plate
channel kept at constant temperature. For X* > 0.1, qb is invariant,
indicating fully developed condition. Similarly, q and qb profiles
shown in Fig. 3(a) and (b) for gp ¼ 1.0 are the profiles for a channel
fully filled with porous material, which are similar to those avail-
able in say, Mitrovic and Maletic [31] or Satyamurty and Marpu [4].

Profiles of q, and qb for Da ¼ 0.001, and the stress jump coeffi-
cient, b ¼ 0, are shown in Fig. 4(a) and (b) for gp ¼ 0.2 and in
Fig. 5(a) and (b) for gp ¼ 0.8, Da ¼ 0.001, and b ¼ 0. As can be
expected, the profiles are not symmetric about Y ¼ 0 as is the case
for gp ¼ 0 or gp ¼ 1.0. As, X* increases, q / 0 for all Y, indicating no
further heat transfer. Also, for large X*, qb becomes invariant with
X*, indicating the onset of fully developed condition. However, this
aspect is further elaborated by examining vqb/vX* for different Y, in
the clear fluid and porous regions.

5.3. Fully developed condition for thermal field

Plot of vqb/vX* vs. X* for gp ¼ 0 and 1.0 at Y ¼ 0 and Y ¼ �0.25 is
shown in Fig. 6. vqb/vX* / 0, for X* > 0.08 which is the standard
result {see, p. 172, Shah and London [1]} for gp ¼ 0.

Similar plot for gp ¼ 0.4 and 0.8 is shown in Fig. 7. It can be
noticed from Fig. 7 that vqb/vX* does go to zero for large X* > 0.15. It
is interesting to note for gp¼ 0.4 and 0.8, that vqb/vX* / 0 at values
of X* higher than that for gp¼ 0 or 1.0. This is due to unequal rate of
change in temperature in the axial direction in the porous and fluid
regions, and the thermal field is considered as fully developed only
after vqb/vX* / 0 for all �1/2 � Y � 1/2.

5.4. Non-dimensional bulk mean temperature

Variation of q*, the non-dimensional bulk mean temperature,
with X* is shown in Fig. 8 for gp ¼ 0 and gp ¼ 1.0. q* decreases
monotonically with X*. For gp ¼ 1.0, in addition, q* depends on Da,
the Darcy number.

q* variation with X* for gp ¼ 0.2, 0.4, 0.6 and 0.8 is shown in
Fig. 9(a–d) for Da ¼ 0.001, 0.005, 0.01 and 0.1 respectively. Also
shown in Fig. 9(a) is the variation of q* with X* for gp ¼ 1.0. Clearly,
q* is neither maximum nor minimum for gp ¼ 1.0, indicating the
existence of an extremum value for 0< gp < 1.0. It can be seen from
Fig. 9(a–d), as Da increases, the variation of q* with gp progressively
decreases. This indicates that the flow in the porous region
approaches the behavior of a clear fluid flow. This is in conformity
with the characteristic displayed by channels fully filled with
porous material for large Da.

5.5. Energy gain by the fluid

By making an energy balance on the fluid, energy gained by the
fluid Qxf up to x can be written as,

Qxf ¼ _mCpðTbx � TeÞ (34)

In Eq. (34), it may be noted that Tbx is nothing but the bulk mean
temperature at an axial distance of x. The non-dimensional energy
gain by the fluid, Qxf is obtained, by dividing both sides of Eq. (34)
with _mCpðTw � TeÞ, as,

Qxf ¼ 1� q* (35)

From the plots given in Figs. 8 and 9, energy gained by the fluid
up to a desired X*, can be calculated. These plots can be used as an
alternate to mean Nusselt number.

5.6. Nusselt number variation

In general, Nusselt number at the wall at Y ¼ �1/2, i.e., adjacent
to the porous material is designated as Nu1x and as Nu2x, at the wall
at Y¼ 1/2, adjacent to the clear fluid. When gp¼ 1.0 or 0, Nu1x¼ Nu2x.
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When gp ¼ 1.0 the Nusselt number is designated as Nugp¼1 and as
Nugp¼0 when gp ¼ 0.

Variation of Nugp¼1 and Nugp¼0 with X* is shown in Fig. 10.
Nugp¼1, depends on Da, whereas, Nugp¼0 is independent of Da.
Nugp¼1/Nugp¼0 for high Da, say �0.1. Nugp¼0 {¼7.54, see, Shah and
London, p. 155, [1]} and Nugp¼1 reach the fully developed value for
say, X* > 0.2. The fully developed Nugp¼1 values depend on the
Darcy number and agree with the values reported in, say, Pouli-
kakos and Kazmierczak [3].

Variation of Nu1x and Nu2x with X* for gp¼ 0.4 is shown in Fig. 11
for different Da¼ 0.001, 0.005, 0.01 and 0.1. When gp s 1 or gp s 0,
Nu1x s Nu2x and both depend on the Darcy number owing to the
coupling of the porous region and the clear fluid region. By
comparing with the Nusselt number variations depicted in Fig. 11,
with those in Fig. 10, it can be noted that Nu1xðgp ¼ 0:4Þ < Nugp¼1

whereas, Nu2xðgp ¼ 0:4Þ > Nugp¼0. Also, it can be noted that,
Nu1x/Nu2x/Nugp¼1/Nugp¼0 when Da is high, say, >0.1.

In order to examine the change in Nu1x and Nu2x with gp, plots of
Nu1x and Nu2x vs. gp at fixed X* have been made. Variation of Nu1x

and Nu2x with gp for different Da¼ 0.001, 0.005, 0.01 and 0.1 for b¼
0 is shown for fixed X* ¼ 0.001 and 0.05 in Fig. 12(a) and (b)
respectively.

An interesting feature that can be noted from Fig. 12(a) and (b),
is that, Nu2x (the Nusselt number at the wall adjacent to the fluid
region) is higher than Nugp¼0 for all gp. It may be recalled that
Nugp¼0 is the Nusselt number for the clear fluid channel. Nu2x

displays a maximum for some gp < 1.0 and this value of gp

decreases as Da increases. Whereas, Nu1x (the Nusselt number at
the wall adjacent to the porous) is lower than the Nugp¼1 values for,
say, gp < 0.8. Further, Nu1x attains a minimum at some gp that
decreases as Da increases. Contrasting variation of Nu1x and Nu2x

with gp leads to the possibility of maximizing (or minimizing) the
heat transfer from the walls by choosing an appropriate gp.
5.7. Wall heat transfer

In the present investigation, instead of the mean Nusselt
number, a non-dimensional wall heat transfer is presented from
which the heat transferred from the walls up to any desired X* can
be calculated conveniently. Qxw1, Qxw2 the non-dimensional heat
transferred from the walls 1 and 2 at Y�1/2 and at Y ¼ 1/2
respectively are defined by,

Qxw1 ¼ �

Zx

0

kðvT=vyÞjy¼�H=2dx

_mCpðTW � TeÞ
¼
ZX*

0

ðvq=vYÞjy¼�1=2dX* (36)

Qxw2 ¼

Zx

0

kðvT=vyÞjy¼H=2dx

_mCpðTW � TeÞ
¼ �

ZX*

0

ðvq=vYÞjy¼1=2dX* (37)

The total heat transferred from the two walls, Qxw is given by,

Qxw ¼ Qxw1 þ Qxw2 (38)

It may be noted that Qxw1 ¼ Qxw2 when gp ¼ 1.0 or gp ¼ 0 and
are designated as Q

gp¼1
xw and Q

gp¼0
xw respectively.

Variation of non-dimensional wall heat transfers, Q
gp¼1
xw and

Q
gp¼0
xw with X* is shown in Fig. 13 by solid line for gp ¼ 1.0 and by

broken line for gp ¼ 0. Q
gp¼0
xw is independent of Da whereas Q

gp¼1
xw

depends on the Darcy number and decreases as Da increases. As can
be expected, Q

gp¼1
xw /Q

gp¼0
xw for high, Da > 0.1. It may be noted that

the total heat transferred from the two walls for gp ¼ 1.0 or 0, is to
be obtained as, 2Q

gp¼1
xw or 2Q

gp¼0
xw .
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Variation of Qxw1 and Qxw2 with X* is shown in Fig. 14(a) and (b)
respectively for gp ¼ 0.2, and 0.6 and in Fig. 15(a) and (b) for gp ¼
0.4, and 0.8. It is evident from Figs. 14 and 15 that, Qxw2 > Qxw1 for
a given Da and gp. In both Figs. 14 and 15, Qxw2zQxw1 for high Da¼
0.1 for all gp conforming to the well noted behavior of porous
material filled channel almost behaving like a clear fluid channel at
higher values of Darcy number.

Plots of Qxwð¼ Qxw1 þ Qxw2Þ vs. X* for gp ¼ 0.2, 0.4, 0.6 and 0.8
are shown in Fig. 16(a–d). Qxw reaches unity for X* > 0.2, indicating
that the fluid got heated (or cooled) from Te, the entry temperature
to the Tw, the wall temperature. Fig. 16(a–d) depict the total heat
transferred from the two walls to the fluid for different porous
fractions, whereas Figs. 14 and 15 are useful in obtaining the heat
transferred from each wall separately.

It is easy to verify from Figs. 8 and 9 and Fig. 16(a–d) that,
Qxw ¼ Qxf ¼ ð1� q*Þ. It is noted that this equality may not be
valid always, for example, when viscous dissipation is included.
5.8. Net change in total heat transfer and optimal porous insert

5.8.1. Optimum based on net change in wall heat transfer
In this section, whether providing a porous insert enhances the

wall heat transfer or not is examined. The net improvement in wall
heat transfer, DQxw, is defined as the difference between the heat
transferred from both the walls when the porous layer is attached
and the heat transferred in the case of a clear fluid channel. DQxw is
given by,

DQxw ¼ Qxw1jgp
þ Qxw2jgp

� 2Q
gp¼0
xw jgp¼0 (39)

Plots of DQxw vs. porous fraction, gp for Da ¼ 0.001, 0.005, 0.01
and 0.1 at five axial positions, X* ¼ 0.001, 0.005, 0.01, 0.05 and 0.1
are shown in Fig. 17(a–e) respectively. The following features are
evident. a) DQxw < 0, for gp < 0.5, i.e., insertion of a porous layer
does not enhance the heat transfer until gp > 0.5 approximately.
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b) DQxw is minimum when gp z 0.25. c) DQxw attains
a maximum at gp z 0.8. This value of gp interestingly is inde-
pendent of Da and X*. This feature implies that desired
enhancement in heat transfer can be attained with a porous insert
of uniform thickness. Further, it is of interest to note that a porous
insert of gp z 0.8 provides the maximum enhancement in heat
transfer, even more than that of a channel fully filled with
a porous material. It is obvious that the pressure drop when gp ¼
0.8, will be lower than that when gp ¼ 1.0.

5.8.2. Pressure gradient variation with porous fraction
A plot of Pgr vs. gp, is given in Fig. 18. It can be seen that jPgrj is

substantially lower for gp¼ 0.6, or even for 0.8 compared to that for
gp ¼ 1.0, particularly for lower Da, which are relevant. At higher Da
> 0.1, it is well known that the porous material filled channel
behaves almost like a clear channel. Thus maximum enhancement
in heat transfer occurring at gp z 0.8 is a distinct advantage in
terms of pumping power.
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5.8.3. Optimum based on net change in wall heat transfer per unit
pressure drop

An alternate way to optimize the porous insert thickness is
based on enhancement in heat transfer per unit pressure drop. A
quantity, DQxw�PD is defined as,

DQxw�PD ¼ DQxw=
�

PjX*¼0 � PjX*

�
(40)

It may be noted that the denominator in the RHS of Eq. (40) is
nothing but the product of Pgr and X*, where Pgr is the non-
dimensional pressure gradient given by Eq. (24). Also the denom-
inator in the RHS of Eq. (40) has been written such that the sign of
DQxw�PD is the same as that of DQxw. Plots of DQxw�PD vs. gp for
different Da (¼0.001, 0.005, 0.01 and 0.1) at X* ¼ 0.001, 0.005, 0.01,
0.05 and 0.1 are given in Fig. 19(a–e).

The qualitative features in Fig. 19 are similar to those in Fig. 17.
The maximum DQxw�PD occurs at gp z 0.7. The main difference
being, jDQxw�PDj > jDQxwj for gp < 0.5 and jDQxw�PDj < jDQxwj for
gp > 0.5. This implies that, though the net heat transfer decreases,
the additional pressure drop has not been too large for gp < 0.5.
Whereas, jDQxw�PDj < jDQxwj for gp > 0.5 indicates that the
enhancement in the heat transfer occurs at a relatively higher
pressure drop. In addition, it is to be noted that, proper weights for
the additional pressure drop and the enhancement in heat transfer
need to be taken into account.
5.9. Influence of stress jump condition at the porous–fluid interface

The numerical results so far presented, assumed that the
velocity and velocity gradient are continuous at the interface by
setting b ¼ 0, i.e., there is no stress jump. In order to examine the
influence of stress jump, the stress jump boundary condition given
by Eq. (14) has been incorporated with b ¼�1.0, �0.7, �0.5, 0.0, 0.5
and 0.7 in obtaining the velocity profiles. Subsequently, the corre-
sponding temperature profiles and Nusselt numbers have been
evaluated. DNu which expresses the net change in the Nusselt
number due to the porous insert is defined by,

DNu ¼ Nu1xjgp
þ Nu2xjgp

� 2Nugp¼0 (41)

A plot of DNu vs. X* is shown in Fig. 20 for Da ¼ 0.001 and gp ¼
0.8 for different values of the stress jump coefficient. gp ¼ 0.8 has
been chosen since DQxw has been found to be maximum at gp z
0.8 for all X*. DNu does not differ significantly with b. Thus, it can be
expected that the maximum (or optimum) values of DQxw (or
DQxw�PD) determined and the corresponding gp do not differ much
with the stress jump coefficient.
6. Conclusions

Non-dimensional bulk mean temperature has been directly
related to the energy gain by the fluid. The thermal field in a channel
partially filled with a porous medium also satisfies the fully developed
condition, but needs larger axial distance compared to clear channels
or those fully filled with porous material. The wall heat transfer on the
porous and fluid sides are unequal owing to geometric asymmetry,
when the channel is partially filled with a porous insert. Porous
inserts of porous fraction less than 0.5 do not lead to an increase in the
heat transfer compared to that of clear fluid channel. The maximum
enhancement in the wall heat transfer is attained at a porous fraction
of, gp z 0.8. Maximum enhancement in heat transfer per unit pres-
sure drop occurs at gp z 0.7. Relative to a channel fully filled with
a porous material, the partially filled channel at a porous fraction of
0.8 or 0.7 has a substantially lower pressure gradient. The effect of
stress jump at the interface on optimum porous fraction and
enhancement in heat transfer is not significant.
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